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Machine learning techniques have recently gained prominence in physics, yielding a host of new results
and insights. One key concept is that of backpropagation, which computes the exact gradient of any output
of a program with respect to any input. This is achieved efficiently within the differentiable programming
paradigm, which utilizes automatic differentiation (AD) of each step of a computer program and the chain
rule. A classic application is in training neural networks. Here, we apply this methodology instead to the
numerical renormalization group (NRG), a powerful technique in computational quantum many-body physics.
We demonstrate how derivatives of NRG outputs with respect to Hamiltonian parameters can be accurately and
efficiently obtained. Physical properties can be calculated using this differentiable NRG scheme—for example,
thermodynamic observables from derivatives of the free energy. Susceptibilities can be computed by adding
source terms to the Hamiltonian, but still evaluated with AD at precisely zero field. As an outlook, we briefly
discuss the derivatives of dynamical quantities and a possible route to the vertex.
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I. INTRODUCTION

The numerical renormalization group (NRG) [1,2] is a
standard tool in computational physics for solving a certain
class of quantum many-body problem, known as quantum
impurity models. These comprise a few interacting quantum
degrees of freedom, coupled to one or more noninteract-
ing baths. The most famous example is the Kondo model,
which involves a single spin- 1

2 “impurity” coupled to a single
fermionic bath [3]. The low-energy physics is nonperturbative
and controlled by a single emergent energy scale [the Kondo
temperature (TK)], below which the impurity is dynamically
screened by a spatially extended entanglement “Kondo cloud”
of surrounding conduction electrons [4]. Generalized quan-
tum impurity models describe the scattering from magnetic
impurities in metals [3,5], semiconductor quantum dot de-
vices [6–9], and single-molecule transistors [10,11] and are
the local effective models within dynamical mean field theory
(DMFT) for correlated materials [12–14].

NRG is a tensor network method [15] that exploits the
renormalization group structure of such quantum impurity
models [1]. At its core, the method involves the iterative
numerical diagonalization of a set of renormalized effective
Hamiltonians. There is no statistical element, as with quantum
Monte Carlo impurity solvers [16].

In this paper, we apply the “differentiable programming”
methodology to NRG and demonstrate some advantages of its
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use for practical physics applications. We show that the core
eigensolver routine in NRG is well suited to automatic dif-
ferentiation (AD), an emerging programming paradigm that
has its origin in deep learning (DL) [17]. In DL, hugely
complicated neural networks (NNs) feed their output into a
loss function, which must be optimized with respect to the NN
parameters (weights). This can be accomplished efficiently
via gradient descent using AD programming: The gradient
of the loss function with respect to the NN weights can be
computed at about the cost of the evaluation of the NN [18].
The remarkable aspect of this technique is that the com-
puted gradient is not approximated, but is numerically exact.
Without AD, derivatives can of course be approximated us-
ing finite-difference (FD) derivatives. However, without care,
FD derivatives can be inaccurate; when treated rigorously
to guarantee convergence, FD can become computationally
expensive. The efficiency and accuracy of AD are owed to the
fact that if each step of a computer program can be differenti-
ated, then outputs can be differentiated with respect to inputs
via the chain rule. Evaluating derivatives is trivial and cheap
since the program itself is differentiated.

AD has been made more accessible through the introduc-
tion of AD libraries such as JAX [19], TENSORFLOW [20], or
PYTORCH [21]. The advantage for computational physics is
that when formulated using an AD library, exact derivatives
can be obtained “for free” [22–28]. Recent applications in
physics include optimal control in quantum systems [29], mit-
igating the sign problem in Monte Carlo [30], and optimizing
tensor networks [31]. In addition to its use for optimiza-
tion problems, AD has particular appeal in physics because
physical quantities are related to derivatives of generating
functionals [32].

Here, we formulate a differentiable NRG (∂NRG) scheme.
The key step is an explicit expression for the derivative
of NRG eigenvalues and eigenvectors: The exact gradient
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of the entire eigensolver routine at any given NRG step is
determined symbolically. This eliminates the need for full
backpropagation and, when combined with AD for the other
program elements, provides highly efficient access to deriva-
tives of program outputs with respect to model parameters.
For example, thermodynamic observables may be obtained
from derivatives of the free energy, and the physical response
of a system to perturbations can be simply and cheaply deter-
mined.

II. FORWARD- AND BACKWARD-MODE AD

The AD approach is similar to symbolic differentiation,
with standard derivative rules applied algorithmically [17,33].
Regarding a program as a function f that maps a given input
x to an output y, we may write f (x) = y. This is typically
achieved in practice by concatenating several primitive func-
tions f (i), viz.,

f = f (n) ◦ f (n−1) ◦ · · · ◦ f (1), (1)

where “◦” denotes the composition of two functions. We de-
note the number primitive functions comprising f as ops( f ).
The flow of data between primitive functions can be expressed
as a compute graph [34]; for simplicity, we consider here only
programs whose graph has a chain topology as in Eq. (1). To
compute the derivative of f with respect to x, one can apply
the chain rule,

∂ f

∂x
= ∂ f (n)

∂ f (n−1)

∂ f (n−1)

∂ f (n−2)
· · · ∂ f (1)

∂x
. (2)

Equation (2) can be evaluated algorithmically in either the
forward mode or the backward mode. In the forward mode,
we apply the recursion

∂ f (i)

∂x
= ∂ f (i)

∂ f (i−1)
δi−1 ≡ δi, with δ0 = 1, f (0) = x, (3)

starting with i = 1 and increasing up to i = n, with f (n) ≡ f
such that δn = ∂ f /∂x is the desired derivative. In backward
mode (also known as backpropagation) we use the recursion

∂ f

∂ f (i)
= ∂ f (i+1)

∂ f (i)
δ̄i+1 ≡ δ̄i, with δ̄n = 1, f (0) = x, (4)

starting from i = n − 1 and decreasing down to i = 0, with
δ̄0 = ∂ f /∂x being the desired derivative.

These forward- and backward-mode AD recursions are
symbolically equivalent methods for calculating derivatives.
In the practical implementation of AD the intermediate deriva-
tives δi or δ̄i are evaluated numerically and stored in memory.
This provides a way to compute numerically exact derivatives,
with the true analytical result recovered when the value of δi

is not truncated [35].
By contrast, the FD approximation reads

∂ f

∂x
≈ f (x + h) − f (x)

h
≡ Dh[ f ](x), (5)

with h being the FD value. The exact limit h → 0± cannot
be taken numerically, and so ∂x f must be approximated for
finite h and the convergence Dh[ f ](x) → ∂x f checked ex-
plicitly. This may require many function evaluations (runs
of the whole program) since for very small h, f (x) and
f (x + h) may be numerically indistinguishable (truncation er-
ror). Furthermore, convergence should be checked for both the

forwards (h > 0) and backwards (h < 0) difference quotient.
The situation gets worse for higher-order derivatives, and
numerical convergence of FD approximations can be costly
and/or fraught [36].

Above we considered scalar functions of the form f : R →
R. However, both AD and FD approaches can be straightfor-
wardly generalized to compute the Jacobian of vector-valued
functions defined over a vector space f : Rn → Rm. The FD
and forward- or backward-mode AD scale differently with
respect to the input dimension n and output dimension m. The
FD exhibits the most expensive scaling of computational cost
with ∼2nm function evaluations required to compute the Ja-
cobian of f in the single-shot case. By contrast, AD methods
do not require the function to be evaluated in order to compute
the derivative, as with the symbolic approach (although since
many derivatives are related to their antiderivative, function
evaluations can be reused to reduce computational cost at
the expense of increased memory cost [37]). Instead, the
computational cost of AD methods is controlled by ops( f ).
Specifically, the forward mode scales as ∼cF nops( f ), while
the backward mode scales as ∼cBmops( f ), with cF , cB < 6
(although the forward mode typically outperforms the back-
ward mode unless m � n [37]). The computational cost of the
FD approach is therefore typically much higher than either
of the AD modes; in this paper we use forward-mode AD
unless stated otherwise. A comparison of the performance
and precision of the different methods, as applied to NRG,
is presented in Appendix A.

Through AD one can obtain the numerically exact deriva-
tive of any program with a single run, as long as all opera-
tions comprising the program are themselves differentiable.
Thus one can differentiate a given physics solver program
simply by utilizing known derivatives of its constituent
operations.

On the other hand, in certain cases it may be possible to
find the symbolic derivative of the entire solver with respect
to certain input parameters. In the following we show how
the latter can be achieved for NRG through analysis of the
backpropagation chain.

III. NRG

Wilson’s NRG is a numerical solver for quantum impurity
models, of the type Ĥ = Ĥimp + Ĥbath + Ĥhyb, where Ĥimp is
the “impurity” Hamiltonian describing a few local, interacting
quantum degrees of freedom, while Ĥbath = ∑

σ,k εkĉ†
σkĉ

σk
describes a noninteracting fermionic bath. The coupling be-
tween them is given by Ĥhyb = ∑

σ,k Vk (d̂†
σ ĉ

σk + ĉ†
σkd̂σ ),

where we have assumed for simplicity here that a single im-
purity orbital d̂σ couples to the bath.

Due to the impurity interactions, such a model is a genuine
quantum many-body problem and in general has no exact
solution [3]. NRG treats instead a discretized version of the
model, which becomes computationally tractable through a
process of iterative diagonalization and truncation. This con-
stitutes a renormalization group (RG) procedure, in which
useful physical information can be extracted at each step, as
progressively lower energy scales are probed. Full details can
be found in Refs. [1,2]; here, we introduce only the elements
necessary to formulate ∂NRG.
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The first step is the logarithmic discretization of the bath
and mapping to a Wilson chain. The continuous local density
of states of the uncoupled bath at the impurity position is
divided up into intervals of decreasing width, defined by the
points x±

n = ±D�−n, where D is the half bandwidth, � > 1
is the discretization parameter, and n = 0, 1, 2, . . .. The spec-
trum is discretized by replacing the continuous density in each
interval by a single pole of the same weight and at the aver-
age position. A semi-infinite tight-binding chain (the Wilson
chain) is then defined such that the spectral function at the end
is the same as the discretized bath spectrum (this is achieved
in practice by the Lanczos algorithm). The discretized bath
Hamiltonian reads

Ĥbath �→ Ĥdisc
bath =

∑
σ

∞∑
n=0

tn(ĉ†
σn+1ĉσn + ĉ†

σnĉσn+1), (6)

where we have assumed particle-hole symmetry here for
simplicity. The original model is recovered as � → 1. The
specific form of the Wilson chain hopping parameters tn de-
pends on details of the dispersion relation εk. However, for a
metallic system, tn ∼ D�−n/2 for large n.

For a Wilson chain of total length N , adding an extra site
N + 1 is therefore always a small perturbation. The NRG
exploits this energy scale separation down the chain through
the iterative diagonalization scheme. Starting from the impu-
rity, the chain is built up by successively adding new Wilson
chain sites. At each step, the system is diagonalized, and
high-energy states are discarded. One defines a sequence of
rescaled Hamiltonians, comprising the impurity and the first
N sites of the Wilson chain,

ĤN = �(N−1)/2

[
Ĥimp + V

∑
σ

(d̂†
σ ĉσ0 + ĉ†

σ0d̂σ )

+
∑

σ

N−1∑
n=0

tn(ĉ†
σn+1ĉσn + ĉ†

σnĉσn+1)

]
, (7)

with V being the effective impurity-bath coupling. The full
(discretized) Hamiltonian is recovered in the limit Ĥ =
limN→∞ �−(N−1)/2ĤN . The sequence of Hamiltonians ĤN sat-
isfy the recursion relation

ĤN+1 =
√

�ĤN + �N/2
∑

σ

tN (ĉ†
σN+1ĉσN + ĉ†

σN ĉσN+1). (8)

At each step N , the Hamiltonian ĤN is diagonalized to
find the eigenvectors (states) {|i〉N } and eigenvalues (energies)
{EN ;i} that satisfy the Schrödinger equation

ĤN |i〉N = EN ;i |i〉N . (9)

We denote excitation energies relative to the ground state as
�EN ;i = EN ;i − EN ;0, and Ĥimp ≡ Ĥ−1. To construct ĤN+1, we
add another Wilson chain site. The Fock space of ĤN+1 is
spanned by basis states,

|i; s〉N+1 = |i〉N ⊗ |s〉 , (10)

comprising the tensor product of eigenstates |i〉N of ĤN , and
the added chain site N + 1 denoted as |s〉. Matrix elements of
ĤN+1 in this basis read

ĤN+1(is; i′s′) = N+1〈i; s| ĤN+1 |i′; s′〉N+1 . (11)

Finally, ĤN+1 is diagonalized to find the new eigenbasis at step
N + 1, viz.,

| j〉N+1 =
∑

is

UN+1( j, is) |i; s〉N+1 . (12)

Equation (11) can be simplified using the energies EN ;i of ĤN

and the tensor ηss′σ = 〈s′| ĉσN+1 |s〉 (which is independent of
N), viz.,

ĤN+1(is; i′s′) =
√

�δss′δii′ × EN ;i

+ (−1)s�N/2tN
∑

σ

ηss′σ ηN ;ii′σ + H.c., (13)

where ηN ; j j′σ = ∑
īs̄,ī′ s̄′ U †

N ( j, īs̄)UN ( j′, ī′s̄′) × δīī′ηs̄′ s̄σ and
s = {0,−1,+1, 2} for |s〉 = {|0〉, | ↓〉, | ↑〉, | ↑↓〉}.

When following these steps, the dimension of the Fock
space grows exponentially with the length of the chain. This
is avoided in NRG by truncating the Fock space at each step,
discarding high-energy states. In practice, one retains MK of
the lowest-energy eigenstates of ĤN at each step. The NRG
approximation [1,38] is that the states and energies of ĤN

approximate those of the full Ĥ . This approximation is justi-
fied by the exponential decay of the Wilson chain coefficients
tn, which means that high-energy states discarded at a given
iteration do not become low-lying states at a later iteration.
Convergence of the NRG calculation can be checked post hoc
by increasing MK . Hereinafter it is to be understood that the
condition i � MK applies to Eq. (10) (with the eigenvalues
sorted from lowest to highest). The dimensionality of the Fock
space is therefore constant at each step, and the NRG calcu-
lation scales linearly with chain length N . With increasing N
the physics on successively lower energy scales is uncovered.

The entire process of going from one iteration to the next
can be summarized as an RG transformation,

ĤN+1 = R[ĤN ]. (14)

The full (discretized, renormalized) Hamiltonian ĤN can
therefore be constructed iteratively starting from the impurity
Hamiltonian Ĥimp. Regarding the latter as a function of n
physical model parameters {θ}, the entire NRG algorithm can
be viewed as a function,

f ({θ}) ≡ R◦N+1[Ĥimp({θ})], f : Rn → CMK ×MK , (15)

where we have used the shorthand notation for an (N + 1)-
fold concatenation of functions R◦N+1 = R ◦ R ◦ · · · ◦ R. All
physical quantities of interest for the original quantum impu-
rity model are obtained from the eigenvalues and eigenvectors
of the set of {ĤN } [1,2,38].

Note that an operator Ô, acting only on impurity degrees
of freedom, can be expressed in the eigenbasis of ĤN . We
denote this matrix as ÔN (i; i′) = N 〈i| Ô |i′〉N . From Eq. (12)
it follows that

ÔN+1( j; j′) =
∑
is,i′s′

′
U †

N+1( j, is)UN+1( j′, i′s′) × ÔN+1(is; i′s′)

=
∑
is,i′s′

′
U †

N+1( j, is)UN+1( j′, i′s′) × ÔN (i; i′)δs,s′ ,

(16)
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where the primed sum implies that i, i′ � MK , and the second
line follows from the fact that Ô does not act on states |s〉 of
site N + 1. Equation (16) can be used iteratively to transform
Ô−1(i; i′), evaluated explicitly in the impurity basis, into the
eigenbasis of any later iteration.

Symbolically, we denote this process

ÔN+1 = P[ÔN ], (17)

which we refer to as propagating forward the operator.

IV. DERIVATIVE OF EIGENVALUES
AND EIGENVECTORS IN NRG

As outlined in the previous section, NRG outputs the eigen-
values and eigenvectors for the set of ĤN . Since all physical
quantities for the quantum impurity model are obtained from
these, calculating their derivatives using Eq. (2) requires the
derivatives of the eigenvalues and eigenvectors of ĤN . From
Eq. (15), we regard NRG as a function defined over an n-
dimensional domain, with an MK × MK -dimensional image.
Since n denotes the number of model parameters in Ĥimp and
MK × MK is the Fock space dimension of ĤN , we have MK ×
MK � n, and therefore forward-mode AD is significantly
faster [35]. In the following we consider only forward-mode
AD.

For a Hermitian matrix Â (such as the Hamiltonian ĤN )
with nondegenerate eigenvectors |i〉 and distinct eigenvalues
λi satisfying Â|i〉 = λi|i〉, we may express the differentials
through [39,40]

dλi = 〈i| dÂ |i〉 , (18a)

d |i〉 =
∑
i �= j

〈 j| dÂ |i〉
λi − λ j

| j〉 . (18b)

These expressions are of course well known in the context of
nondegenerate perturbation theory [41].

However, the assumption implicit in Eq. (18b) that Â
must be free of eigenvalue degeneracies is rather restric-
tive. Methods treating the general degenerate case are much
more computationally involved and may suffer from numer-
ical instabilities [40,42]. Of course in physics, where Â is
the Hamiltonian of some system, energy eigenvalue degen-
eracies are common. This may be because of underlying
non-Abelian symmetries [for example, SU(2) spin symmetry],
which endow the spectrum of the Hamiltonian with a multi-
plet structure. In this case, the Hamiltonian becomes block
diagonal in the associated conserved quantum numbers, and
the diagonalization equation (12) can be performed separately
in each block. Alternatively, NRG can be formulated directly
in multiplet space by using the Wigner-Eckart theorem [43].
Either approach removes the problem of such degeneracies
in Eq. (18b). However, this may not fully solve the prob-
lem, since there could be accidental degeneracies or emergent
symmetries [1,3,7] that lead to additional energy eigenvalue
degeneracies in physical systems.

To overcome this, we make a simple approximation. To the
diagonal entries of ĤN we add noise, with random variables
drawn from a normal distribution of width σ . The noise lifts
the eigenvalue degeneracy, meaning that derivatives can be
obtained using Eqs. (18a) and (18b). Note that the smallest

terms in the rescaled Hamiltonian ĤN are O(1) [1,2], so σ �
1 constitutes a small perturbation. Care should be taken to add
the noise in such a way as to respect bare symmetries.

With a straight application of AD via Eq. (3), the deriva-
tives of eigenvalues and eigenvectors for ĤN require the
evaluation of Eqs. (18a) and (18b) at every NRG step (and
hence noise must be added at every NRG step). For small
enough noise width σ , physical properties at a given it-
eration should be unaffected. Indeed, in Appendix A we
show for the Anderson impurity model (AIM) that NRG
remains highly accurate when σ � 10−6. At larger noise lev-
els, errors may propagate through the iterative process (and
will snowball if they introduce RG-relevant perturbations),
so care must be taken to avoid this with such an AD ap-
proach. On the other hand, forward-mode AD for the AIM
requires σ � 10−6 to stabilize the calculation of derivatives
using Eqs. (18a) and (18b). Smaller noise levels introduce
more severe numerical instabilities because of the recur-
sive nature of the derivative calculation in AD via Eq. (3):
Derivatives at one iteration depend on those of previous iter-
ations. This stability-accuracy trade-off in AD is analyzed in
Appendix A.

Below, we derive an alternative formulation used in ∂NRG,
which utilizes the symbolic derivative of the entire eigensolver
for ĤN . This has the advantage that Eqs. (18a) and (18b) need
only be applied once, at the NRG step for which derivatives
are required. Not only is this far less computationally costly,
but also it avoids accumulating errors introduced by noise,
which can then be added at a much lower level.

Formulation in ∂NRG

In the context of NRG, one can formulate a differential
recursion relation based on the RG transformation equa-
tion (14),

dĤN = dĤN−1
dR(ĤN−1)

dĤN−1
. (19)

This allows derivatives of ĤN to be computed in AD for-
ward or backward mode. However, one can also reformulate
the problem in a much more simple and efficient way. Tak-
ing derivatives with respect to model parameters θ of Ĥimp,
we may write from Eq. (7) the operator identity ∂θ ĤN �
�(N−1)/2 ∂θ Ĥimp (where � follows from the NRG approxima-
tion). Since ∂θ Ĥimp only involves impurity operators, it can be
trivially evaluated in the impurity basis, [∂θ Ĥimp]−1(k; k′) =
−1〈k|∂θ Ĥimp|k′〉−1. Equation (17) can then be used to propa-
gate this operator forward into the basis of ĤN . It therefore
follows that

[∂θ ĤN ]N � �(N−1)/2 P◦N+1([∂θ Ĥimp]−1). (20)

From Eqs. (18a) and (18b) we then obtain

∂θEN ;i � �(N−1)/2 P◦N+1([∂θ Ĥimp]−1)(i; i), (21a)

∂θ |i〉N � �(N−1)/2
∑
i �= j

P◦N+1([∂θ Ĥimp]−1)( j; i)

EN ;i − EN ; j
| j〉N . (21b)

Equations (21a) and (21b) are the main result of this work.
These equations show how the derivative of energies and
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states of the NRG Hamiltonians ĤN can be obtained by
simply forward-propagating the impurity operators ∂θ Ĥimp.
Derivatives of physical quantities can then be related to those
obtained via Eqs. (21a) and (21b). The above can also be
generalized to deal with derivatives ∂φ of other Hamiltonian
parameters φ [for example, V or tn in Eq. (7)] and higher-order
derivatives (see Appendix B).

To calculate first-order derivatives of eigenvalues and
eigenvectors in AD forward mode (assuming the simplest
NRG implementation), one must perform seven additional
operations for every NRG step. The ∂NRG approach involves
only one additional operation per NRG step and does not
require any propagation of derivatives related to the chain
rule (see Appendix C). Hence ∂NRG, utilizing Eqs. (21a)
and (21b), is far more efficient than standard forward-
mode AD. Performance benchmarking is demonstrated in
Appendix A.

Derivatives with respect to multiple parameters can
be obtained straightforwardly by propagating forward any
[∂θ Ĥimp]−1 of interest using Eq. (16) in ∂NRG. Therefore
∂NRG scales linearly with the number of derivatives n but is
independent of ops( f ), unlike forward-mode AD.

In practice, the use of Eq. (21b) again requires lifting
eigenvalue degeneracies by adding a small diagonal noise
term. We found in numerical tests for the AIM that σ � 10−11

is sufficient for stabilizing the numerics in ∂NRG, without
noticeably impacting any measurable physical properties; see
Appendix A.

If derivatives at only step N are required, such a noise term
need only be introduced at that step (rather than adding noise
at each step), and the RG flow is unaffected. This is typically
the situation for ground-state properties or low-temperature
thermodynamics. On the other hand, if information is required
from every NRG step (for example, in the calculation of
dynamical quantities [38]), noise must be introduced at each
iteration. Unlike with the straight AD implementation, ∂NRG
allows us to mitigate the possibility of snowballing errors
introduced by propagating the noise terms—if this level of
accuracy should be required (e.g., in the vicinity of a quantum
critical point). This is because the eigensystem derivatives at
different N via Eq. (21b) are independent in ∂NRG. Noise
may be added to ĤN for the purpose of evaluating Eq. (21b),
but the pristine ĤN without noise can be used for the main
NRG recursion. This gives the most accurate and reliable
results, at the cost of an additional matrix diagonalization.
See Appendixes A and C for performance comparisons (and
note that this more rigorous approach is still faster than FD
and straight AD in many circumstances, and certainly more
accurate).

V. APPLICATION TO ANDERSON IMPURITY MODEL

We illustrate the use of Eqs. (21a) and (21b) by applying
the ∂NRG scheme to the paradigmatic Anderson impurity
model (AIM), for which

Ĥimp = εn̂ + Un̂↑n̂↓, (22)

where n̂ = ∑
σ n̂σ and n̂σ = d̂†

σ d̂σ . With Ĥimp so defined, the
exact (discretized) ĤN is given by Eq. (7). In NRG, ĤN is

approximated through the RG procedure equation (14), ĤN =
R◦N+1(Ĥimp).

For a given ĤN , we obtain the partition function ZN (β̄ ) =∑
i e−β̄EN ;i and free energy FN (β̄ ) = − 1

β
ln[ZN (β̄ )]. In the

original Wilsonian formulation [1,2], the effective inverse
temperature β ≡ 1/kBT is related to the NRG iteration num-
ber (Wilson chain length) N via β = �(N−1)/2β̄, with β̄ =
O(1) in practice. With this definition, the NRG free energy
at inverse temperature β̄ is a good approximation to the true
free energy of the original (undiscretized) model at inverse
temperature β [1,2], F (β ) � FN (β̄ ). The corresponding dif-
ferential follows as

dFN = �−(N−1)/2

ZN

∑
i

e−β̄EN ;i dEN ;i. (23)

For the AIM, we may use Eq. (21a) to obtain derivatives of
the free energy with respect to the impurity parameters ε and
U . For example,

∂εFN = 1

ZN

∑
i

e−β̄EN ;i P◦N+1([n̂]−1)(i; i). (24)

Since ∂εFN (β̄ ) = 〈n̂〉HN ,β̄ � 〈n̂〉H,β , Eq. (24) is precisely
equivalent to the standard Wilsonian approach to calculating
local thermodynamic expectation values in NRG [2]. The
above illustration demonstrates that ∂NRG is analytically
equivalent to the well-known result for such local thermody-
namic quantities.

Another commonly computed quantity for such models is
the local impurity magnetic susceptibility at zero field,

χ (T ) =
∫ β

0
dτ 〈Ŝz(τ )Ŝz〉 − β〈Ŝz〉2,

where Ŝz = 1
2 (n̂↑ − n̂↓) is the impurity spin operator and

τ is imaginary time. This can be alternatively obtained by
adding a source term BŜz to the Hamiltonian equation (22)
and then taking the second-order derivative of the free en-
ergy with respect to B, evaluated at B = 0. That is, we can
write χ (T ) = ∂2

∂B2 F |B=0. Since ∂NRG is able to deal with
derivatives of second (and higher) order (see Appendix B), we
calculate χHN ,β̄ = ∂2

∂B2 FN (β̄ )|B=0. This is obtained automati-
cally in ∂NRG, but from Eq. (B2b) it can also be expressed
as

χHN ,β̄ = − β̄

Z2
N

(∑
i

e−β̄Ei;N P◦N+1([Ŝz]−1)(i; i)

)2

+ β̄

ZN

∑
i

e−β̄Ei;N |P◦N+1([Ŝz]−1)(i; i)|2

− 2

ZN

∑
i

e−β̄Ei;N
∑
i �= j

|P◦N+1([Ŝz]−1)( j; i)|2
EN ;i − EN ; j

. (25)

This form of χHN ,β̄ is equivalent to the Lehmann representa-
tion of χ (T ) evaluated in NRG Hamiltonian ĤN at effective
inverse temperature β̄ = β�−(N−1)/2 [2]. Since all degenera-
cies are lifted in ∂NRG, convergence factors typically used in
the Lehmann representation of dynamical quantities are not
needed here. Note that χHN ,β̄ can be obtained at exactly zero
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magnetic field, so no symmetries are broken and no limit is
taken numerically. Since the derivatives of primitive program
functions are symbolic, source terms added to Ĥimp may be
evaluated at zero coupling constant and still yield finite deriva-
tives. However, we note that such symmetry-breaking source
terms cannot be added to the Hamiltonian if non-Abelian
quantum numbers are implemented from the outset. In the
case of the magnetic susceptibility, we can therefore utilize
conserved total Sz, but not conserved total S, when adding
the source term BŜz (even though in the end we set B = 0).
Numerical results are presented in Appendix A and reproduce
precisely the results of standard NRG using Eq. (25).

Similarly, ∂NRG may be used to obtain the charge sus-
ceptibility, which in the wide-band limit is given simply by
χC (T ) � ∂2FN (β̄ )/∂ε2 = ∂ε〈n̂〉HN ,β̄ [and can be obtained by
replacing Ŝz by n̂ in Eq. (25)]. Indeed, Maxwell relations
provide nontrivial connections between physical quantities
obtained as derivatives. This was exploited recently in
Ref. [44] to extract the fractional entropy of multichannel
Kondo states in quantum dot experiments, comparing with
NRG calculations of charge derivatives.

The above examples for the AIM demonstrate that the
∂NRG algorithm is equivalent to known expressions for cer-
tain derived quantities. However, the power of ∂NRG is that
it does this automatically within a generalized framework and
works equally well for any derivative in any quantum impurity
model.

VI. NUMERICAL RESULTS

For the following numerical demonstrations, we imple-
mented a basic NRG code in JAX [19], using the included
AD routines to obtain derivatives via Eqs. (21a) and (21b).
For simplicity we did not exploit quantum numbers here, and
so eigenstate degeneracies were removed by adding Gaussian
noise with a small variance σ � 10−11 (FD derivatives were
calculated for comparison without noise, σ = 0). In the fol-
lowing we set the conduction electron half bandwidth to D =
1 and use an NRG discretization parameter � = 3. Further
details on the numerical calculations and the finite-difference
derivatives can be found in Appendixes D and E, respectively.

First we use ∂NRG to compute the derivative of the
ground-state energy EN ;0 of the AIM with respect to the inter-
action U . AD results in Fig. 1 (blue lines) are compared with
FD approximations (circles), as a function of U at iteration
N = 5 (upper panel) and N = 40 (lower panel), normalized
by their respective U → 0 derivatives. The green lines show
the variation of EN ;0 itself. The results show the nontrivial
effect of renormalization going from N = 5 to N = 40 at
intermediate U , as well as the saturation of the ground-state
derivatives at both large and small U . In this case we see
excellent agreement between AD and FD results (although the
former are far less computationally expensive to obtain).

Figure 2 demonstrates the use of ∂NRG to obtain thermo-
dynamic quantities from derivatives of the NRG free energy.
The inset shows the impurity occupation 〈n̂〉 � ∂εFN at a tem-
perature T/D ∼ 10−5 (corresponding to N = 20 and β̄ = 0.9)
for the same systems as in Fig. 1. Since ε = −U/2, the
AIM possesses an exact particle-hole symmetry and hence
is at half filling, 〈n̂〉 = 1. The AD results (blue line) sat-

FIG. 1. Ground-state energy EN ;0 of the AIM (green line) and
its normalized derivative ∂U EN ;0/ν0 obtained by ∂NRG (blue line)
and by FD (red circles) for iteration N = 5 (top panel) and N = 40
(bottom panel). Results plotted as a function of U , with ε = −U/2
and constant J ≡ 8V 2/U = 0.3. We define ν0 = ∂U EN ;0|U→0 as the
derivative in the limit U → 0.

isfy this exact result precisely, while the FD results (circles)
show some numerical error. More interestingly, the ∂NRG
framework allows us to obtain higher derivatives with equal
ease [Eqs. (B2a) and (B2b) are used instead of Eqs. (18a)
and (18b)], as shown in the main panel of Fig. 2. Here, we
calculate the corresponding second derivatives ∂2FN/∂U∂ε �
∂U 〈n̂〉, which again show nontrivial behavior as a function of
interaction strength U . The FD approximations agree well but
are much more costly to obtain [36], requiring for every point
five executions of the entire NRG code per second derivative,
and an expensive convergence test. ∂NRG requires only a
single function evaluation (see Appendix C).

As a final application of ∂NRG for the AIM, we turn to the
RG energy level flow diagram shown in the top panel of Fig. 3.
The excitation spectrum of the effective rescaled ĤN plotted
against iteration number N shows the well-known flow be-
tween fixed points [1–3]. In the example shown, the crossover
scales are well separated, such that we see distinct level
structures associated with the free-orbital (FO), local-moment
(LM), and strong-coupling (SC) fixed points as marked on
the diagram. At a fixed point, the level structure does not
change with N . Indeed, the RG structure of the problem and
resulting universality imply that the fixed point level structure
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FIG. 2. Free-energy derivatives of the AIM obtained by ∂NRG.
The inset shows ∂εFN � 〈n̂〉T ; the main panel shows ∂U (∂εFN ) �
∂U 〈n̂〉T , comparing AD (blue lines) with FD (red circles). The same
parameters are used as for Fig. 1, but with N = 20 and β̄ = 0.9
yielding an effective temperature T/D � 3 × 10−5.

is the same, independent of the microscopic model parameters
U (≡ −2ε) and V : Only the crossover scales between fixed
points are affected.

This is demonstrated in the bottom panel of Fig. 3, where
we plot the derivatives with respect to U of the NRG energy
levels EN ;i, again as a function of iteration number N . As
expected, the derivatives vanish at the fixed points (the level
structure does not depend on U at the fixed points); however,
there is a strong dependence along the crossovers, since the
crossover scales depend on U .

VII. OUTLOOK: DYNAMICS AND THE VERTEX

The above numerical results for the AIM are provided
as a demonstration proof of principle. Future useful appli-
cations exploiting the full power of ∂NRG may be found
for more complex models, situations involving higher-order
derivatives, optimization techniques requiring exact gradients,
or cases where partial derivatives of NRG outputs with respect
to inputs are difficult to obtain by standard FD means. An
example of the latter is the derivative of frequency-dependent
dynamical quantities, such as impurity Green’s functions or
the conduction electron scattering T matrix, with respect to
bare model parameters.

In the context of dynamical mean field theory (DMFT)
for correlated materials [12,13,45], model machine learning
techniques [46] could be applied to optimize simpler effective
models with respect to more complicated microscopic ones,
by comparing their Green’s functions. Given the nontrivial
dependence of such dynamical quantities at different energies
on model parameters, the exact gradient within the AD frame-
work becomes an essential ingredient for gradient descent
optimization.

References [47,48] recently uncovered the analytic struc-
ture of the full local vertex and proposed a scheme to compute
it within NRG. The vertex is an important object, entering, for
example, in extensions of DMFT beyond the local limit [49].

FIG. 3. Top: NRG energy level flow diagram for the AIM. The
lowest 32 rescaled excitation energies �EN ;i above the ground state
at iteration N are plotted as a function of N (for even N only). Plotted
for model parameters U = 0.01, ε = −U/2, and J ≡ 8V 2/U = 0.2,
with the free-orbital (FO), local-moment (LM), and strong-coupling
(SC) regimes marked. Bottom: the corresponding derivatives with
respect to U obtained by ∂NRG.

It is possible that some partial information on the vertex could
also be obtained by ∂NRG. This is inspired by the result in
Ref. [50] for the AIM which, within the Matsubara formalism,
connects the vertex at zero bosonic frequency F loc

νν ′ (ω = 0) to
the functional derivative of the interaction self-energy �ν with
respect to the hybridization �ν ′ , viz.,

δ�ν

δ�ν ′
= T [Gν ′]2F loc

νν ′ (ω = 0), (26)

where Gν ′ is the single-particle impurity Matsubara Green’s
function. For a precise definition and discussion of F loc

νν ′ (ω =
0), see Refs. [47,50]. Since Gν ′ and �ν can be calculated
within standard NRG [51], we argue that such an object is ob-
tainable within ∂NRG. We speculate that a Keldysh version of
Eq. (26) may similarly provide access to certain information
about the real-frequency vertex at finite temperatures.

In order to calculate such derivatives of dynamical
quantities, further code development is required, since the
full-density-matrix NRG method would need to be imple-
mented using AD libraries such as JAX [19] and integrated

013227-7



JONAS B. RIGO AND ANDREW K. MITCHELL PHYSICAL REVIEW RESEARCH 4, 013227 (2022)

within the ∂NRG scheme described in this paper. We leave
this for future work.

VIII. CONCLUSION

NRG is the gold-standard method of choice for solving
generalized quantum impurity models [1,2]. In this paper, we
introduce a variant of the standard algorithm—∂NRG—which
makes use of the differential programming paradigm to auto-
matically and efficiently obtain derivatives of NRG outputs
with respect to input model parameters.

We make use of the AD JAX library [19], together with a
bespoke routine based on Eqs. (21a) and (21b) which allows
the derivatives of Hamiltonian eigenvalues and eigenvectors
to be obtained at any iteration in an accurate and inexpensive
way.

We demonstrated the use of ∂NRG by application to the
Anderson impurity model, for which we obtained the deriva-
tive of NRG energy levels with respect to model parameters,
calculated thermodynamic quantities from derivatives of the
NRG free energy, and susceptibilities from derivatives of
Hamiltonian source terms. ∂NRG may be useful for machine
learning applications involving NRG [46] for which gradient
descent optimization requires derivatives of a loss function;
for adaptive broadening schemes [52]; or for optimal control
protocols [29]. Richer physical information may be obtained
from derivatives of dynamical quantities. This also opens the
door to automatic differentiable DMFT, with ∂NRG as the
impurity solver. Finally, we note that the ∂NRG methodol-
ogy is compatible with interleaved-NRG (iNRG) [53,54] and
generalizations utilizing full symmetries [43]. This is left for
future work.

Our fully commented code is available as open-source
software [55].
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APPENDIX A: ACCURACY AND SPEEDUP
NUMERICALLY BENCHMARKED

In this Appendix we demonstrate that (i) NRG and ∂NRG
are not affected by the addition of Gaussian noise with a
small variance and (ii) the real-world performance of ∂NRG
exceeds that of basic AD and FD in terms of both accuracy
and speed.

A degeneracy-free NRG Hamiltonian is required for ap-
plication of Eqs. (18a) and (18b). However, physical systems
often do have eigenvalue degeneracies, arising, for example,
from underlying symmetries. Although one can partially mit-
igate this problem by exploiting Abelian and non-Abelian
quantum numbers, some degeneracies may remain. Here, we
consider the “worst-case” scenario, in which no symmetries
are exploited.

First we examine the effect of adding Gaussian noise with
mean μ = 0 and variance σ to the diagonal elements of ĤN .

(a)

(b)

FIG. 4. (a) Dependence of TK on the noise variance σ at different
MK . The number of kept states ranges from 150 to 500 in steps of
50. The AIM parameters used are ε = −0.15, U = 0.3, V = 0.1,
and B = 0. (b) Zero-field impurity magnetization 〈Ŝz〉 computed
via derivatives of the free energy using ∂NRG and forward-mode
AD, as a function of Wilson chain length N (for MK = 500). The
noise variance is σ = 1 × 10−8, 3 × 10−8, 1 × 10−7, 3 × 10−7, ...,
1 × 10−2. The model parameters are the same as in (a).

We use the Kondo temperature TK as one figure of merit
for assessing the effect of the noise term. For simplicity we
define the Kondo temperature through the impurity entropy
via Simp(T = TK ) = 0.5 (suitably between the local-moment
and strong-coupling fixed point values). We compute TK for
10−8 � σ � 10−2 and different numbers of kept states 100 �
MK � 500 (using fixed � = 3). Figure 4(a) shows clearly
that for σ � 10−6 the Kondo temperature does not noticeably
depend on the noise level (we have confirmed explicitly down
to σ = 10−15 that the results are fully converged for each MK ).
Other physical quantities computed in standard NRG show
similar behavior.

However, the effect of adding noise is more pronounced in
derivatives. In Fig. 4(b) we compare ∂BFN (β̄ )|B=0 = 〈Ŝz〉HN ,β̄

as a function of Wilson chain length N , as computed with
∂NRG and straight AD for different σ . Since the impurity
magnetization is evaluated at zero field, SU(2) spin symme-
try implies the exact result 〈Ŝz〉HN ,β̄ = 0. However, this spin
symmetry is not enforced, and so we see deviations due to
the noise. As Fig. 4(b) shows, ∂NRG accurately approximates
the exact result even at relatively high σ . By contrast, AD
yields derivatives that strongly depend on σ and have much
higher error than ∂NRG at a given σ . Indeed, derivatives are
numerically not computable for all N in standard forward-
mode AD for σ � 10−6; at larger noise levels, AD derivatives
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(a)

(c)

(b)

FIG. 5. (a) Magnetic susceptibility χ calculated with ∂NRG for
different noise variances σ . (b) χ computed using forward-mode AD
and 10−8 � σ � 10−2. (c) χ computed with ∂NRG using the pole
broadening approach, with 10−15 � δ2 � 100. All calculations are
performed with MK = 500 and with the same AIM parameters as in
Fig. 4.

are computable but the accuracy can become poor, especially
at later iterations due to the propagation and accumulation of
errors through the derivative chain rule.

Therefore, although NRG for the AIM is insensitive to
noise for σ � 10−6, the AD approach is not stable at these
noise levels. At higher noise levels, AD is stabilized, but the
accuracy suffers. On the other hand, ∂NRG avoids such prob-
lems: A lower noise level can be used since each derivative
calculation is independent, and highly accurate results can be
obtained.

Within ∂NRG, the magnetization calculation via the analog
of Eq. (24) shown in Fig. 4(b) does not involve eigenvector
derivatives and is therefore particularly stable. By contrast,
the AD calculation of any derivative is built up recursively via
Eq. (3) and therefore does involve the computation of eigen-
vector derivatives at each and every step. This contributes to
the relative performance gain in ∂ NRG.

In Fig. 5 we examine the magnetic susceptibility χ (T ).
The calculation of this quantity, which is obtained automat-
ically in ∂NRG via the second derivative of the NRG free
energy, is formally equivalent to the analytic expression,
Eq. (25) (and does involve eigenvector derivatives). Gaussian
noise of width σ is added to the diagonal of ĤN at itera-
tion N . The calculated χHN ,β̄ at β̄ = 0.9 (used hereinafter)
is then interpreted as the true χ (T ) at inverse temperature
β = �(N−1)/2β̄. The numerical results from ∂NRG show that
χHN ,β̄ is obtained reliably at all N (and hence all T ) for σ

as low as 10−11. Only at smaller σ does the method break
down: Derivatives are then not computable for earlier iter-
ations or higher temperatures (the correct low-T behavior
is, however, still captured). As demonstrated in Fig. 4 and
confirmed in Fig. 5(a), highly accurate results are obtained
for σ < 10−6. Therefore in ∂NRG we have a wide window

10−11 < σ < 10−6 over which numerical results are fully
converged and stable.

By contrast, in Fig. 5(b) we show results for the same
quantity obtained by straight AD. The calculation is not nu-
merically stable for small σ , but very inaccurate for large σ

(typical of the breakdown for higher-order derivatives). As
such there is no reliable regime for which robust results can
be obtained by straight AD.

In Fig. 5(c) we examine the feasibility of an alternative
approach to the eigenvalue-degeneracy problem that avoids
adding Gaussian noise. The method, proposed by Liao et al.
in Ref. [31], consists of reformulating Eq. (18b),

d |i〉 =
∑
i �= j

〈 j| dÂ |i〉
λi − λ j

| j〉 ≡
∑
i �= j

〈 j| dÂ |i〉 f (λi − λ j ) | j〉 ,

(A1)

(a)

(b)

FIG. 6. Representative calculation runtime in seconds, vs num-
ber of kept states MK , comparing different automatic derivative
techniques and computed quantities. In all cases shown, blue lines
correspond to ∂NRG with single diagonalization, orange lines are for
∂NRG with double diagonalization, red lines are for forward-mode
AD, and green lines are for backward-mode AD. (a) Calculation at
N = 40 of 〈Ŝz〉HN ,β̄ (solid lines) compared with the calculation of
both 〈Ŝz〉HN ,β̄ and 〈n̂〉HN ,β̄ (dash-dotted lines), obtained via the first
derivatives of the NRG free energy. (b) Calculation for all N � 40 of
〈Ŝz〉HN ,β̄ requiring first derivatives (solid lines), and χHN ,β̄ requiring
second derivatives (dash-dotted lines). Model parameters are as in
Fig. 4.
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with f (x) = 1/x. Divergences induced by eigenvalue degen-
eracies can be avoided by replacing the function f (x) with the
approximate broadened form f (x) ≈ x/(x2 + δ2) with δ � 1.
This broadening approximation is known to distort somewhat
the overall results but has the advantage that divergences are
removed without the need to lift degeneracies. Figure 5(c)
shows numerical results for χ (T ) obtained in this way, as
a function of T for different broadenings δ. Although the
method always yields a computable result, the true result
(dash-dotted line) is only obtained in the δ → 0 limit at the
lowest temperature scales. Finite δ at intermediate T appears
to yield rather poor results. We conclude that ∂NRG is indeed
the method of choice in this context, in terms of accuracy.

We now turn to an analysis of the real-world performance
of ∂NRG in terms of calculation time, comparing with straight
AD implemented in JAX [19]. The figure of merit is the run-
time measured in seconds of both algorithms run on the same
machine (in this case an AMD Threadripper 2950X platform
running PYTHON 3.8.10 with the OMP_NUM_THREAD = 16
flag; further package specifications can be found in Ref. [56]).
We do not utilize any quantum numbers here.

In Fig. 6(a) we compare the runtime for the calculation
of (i) 〈Ŝz〉HN ,β̄ (solid lines), and (ii) 〈Ŝz〉HN ,β̄ and 〈n̂〉HN ,β̄ to-
gether (dash-dotted lines); using ∂NRG (blue), forward-mode
AD (red), and backward-mode AD (green), at the last NRG
iteration, N = 40. We see that for all MK , ∂NRG performs
best (with the relative speedup becoming more pronounced
at larger MK ). For straight AD, we see that forward mode
beats backward mode for the calculation of a single derivative;
however, since backward-mode AD scales with the number of
inputs rather than outputs, it will overtake the forward mode
when many derivatives are calculated.

In Fig. 6(b) we compare runtimes using ∂NRG with a
single diagonalization of ĤN (blue), ∂NRG with double diag-
onalization of ĤN (orange), and forward-mode AD (red). We
calculate 〈Ŝz〉HN ,β̄ (solid lines), and χHN ,β̄ (dash-dotted lines)
at all iterations N � 40. For the orange lines, two diagonal-
izations of ĤN are performed at each step (with and without
noise), which thereby eliminates error propagation from the
added noise and provides the most accurate calculation (this
may or may not be needed in practice, depending on the
situation). We see that ∂NRG with a single diagonalization
per step is the fastest in all cases. For the simpler quantity
〈Ŝz〉HN ,β̄ (which involves only a first derivative), the ∂NRG
using two diagonalizations and the forward-mode AD have
similar runtimes, although AD is slightly faster. However, for
χHN ,β̄ , both versions of ∂NRG are considerably faster. This is
because the calculation of χHN ,β̄ requires a second derivative,
which is much more computationally expensive in AD, but
almost as cheap in ∂NRG. The relative performance gain for
∂NRG also increases if several derivatives are computed.

In conclusion, in a typical setting, ∂NRG is considerably
more efficient than AD (often by orders of magnitude)—while
at the same time being more accurate.

APPENDIX B: HIGHER-ORDER DERIVATIVES

Equations (18a) and (18b) allow us to take the derivatives
of eigenvalues and eigenvectors of some Hermitian, nonde-
generate Hamiltonian Ĥ . Consider now a Hamiltonian that
can be linearly decomposed as

Ĥ ({θ}) =
∑

i

θiĥi, (B1)

TABLE I. Wengert list for NRG with forward-mode AD. Left column: the primal trace prescribes all steps to be performed to execute an
NRG calculation with N iterations. Right column: the tangent trace prescribes all steps to compute the derivative of the NRG Hamiltonian ĤN .

Forward primal trace Forward tangent trace

v−3 = � dv−3 = 0

v−2 = {tn} dv−2 = 0

v−1 = η dv−1 = 0

v0 = Himp dv0 = dHimp

v1 = EIGENVALUES(v0) [dv1]i = [v2]†
i · dv0 · [v2]i

v2 = EIGENVECTORS(v0) [dv2]i = ∑
j �=i

[v2]†
j ·dv0 ·[v2]i

[v1]i−[v1] j
[v2] j

v3 = vT
−1 dv3 = 0

FOR n = 0 to N FOR n = 0 to N

v7n+4 = v7n dv7n+4 = dv7n

[v7n+5]iiss = v
1/2
−3 [v7n+1]l [dv7n+5]iiss = v

1/2
−3 [dv7n+2]l

[v7n+6]ii′ss′ = (−1)i′ [v−2]n
∑

σ [v7n+3]σ ii′ [v−1]σ ss′ [dv7n+6]ii′ss′ = (−1)i′ [v−2]n
∑

σ [dv7n+3]σ ii′ [v−1]σ ss′

[v7n+7]ii′ss′ = [v7n+5]ii′ss′ + [v7n+6]ii′ss′ + [v7n+6]†
ii′ss′ [dv7n+8]i = [v7n+9]†

i · dv7n · [v7n+9]i

v7n+8 = EIGENVALUES(v7n+7) [dv7n+8]i = [v7n+9]†
i · dv7n · [v7n+9]i

v7n+9 = EIGENVECTORS(v7n+7) [dv7n+9]i = ∑
j �=i

[v7n+9]†
j ·dv7n ·[v7n+9]i

[v7n+8]i−[v7n+8] j
[v7n+9] j

[v7n+10]σ ii′ = ∑
ss′

∑
j j′ [v7n+9]†

i;s j[v7n+9]i;s′ j′ [v−1]σ ss′ [dv7n+10]σ ii′ = ∑
ss′

∑
j j′ ([dv7n+9]†

i;s j[v7n+9]i;s′ j′

+[v7n+9]†
i;s j[dv7n+9]i;s′ j′ )[v−1]σ ss′

y0 = v7N+7 dy0 = dv7N+7
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where ĥi is an operator defined over the same Hilbert space
as Ĥ , and with the corresponding coupling constant θi being
a real scalar. In this case, all second-order derivatives of the
Hamiltonian must vanish, ∂2Ĥ

∂θi∂θ j
= 0. It is then possible to de-

rive a closed-form expression for the second-order derivatives
of eigenvalues and eigenvectors with respect to the couplings
θ1, θ2 ∈ {θ}, viz.,

∂θ1∂θ2 Ei = 2
∑
i �= j

〈i|∂θ2 Ĥ | j〉〈 j|∂θ1 Ĥ |i〉
Ei − Ej

, (B2a)

∂θ1∂θ2 |i〉 =
∑
i �= j

⎡
⎣�i j | j〉 + 〈 j|∂θ1 Ĥ |i〉

λi − λ j

∑
j �=k

〈k|∂θ2 Ĥ | j〉
λ j − λk

|k〉
⎤
⎦,

(B2b)

where

�i j = −〈i|∂θ2 Ĥ |i〉 − 〈 j|∂θ2 Ĥ | j〉
(λi − λ j )2

〈 j|∂θ1 Ĥ |i〉

+
∑
j �=k

〈 j|∂θ2 Ĥ |k〉
λ j − λk

〈k|∂θ1 Ĥ |i〉

+
∑
k �=i

〈k|∂θ2 Ĥ |i〉
λi − λk

〈 j|∂θ1 Ĥ |k〉. (B3)

With these formulas one can compute physical observables
depending on second derivatives, such as susceptibilities, us-
ing ∂NRG.

APPENDIX C: COMPARING DIFFERENTIATION
METHODS

The basic NRG algorithm is described in the main text,
with the key steps contained in Eqs. (6)–(13). For more de-
tails, see Ref. [2]. Assuming that degeneracies in the NRG
Hamiltonian ĤN are lifted, we can use Eqs. (18a) and (18b)
to compute the derivatives of eigenvectors and eigenvalues of
ĤN . The Wengert list [37,57] with the forward primal trace
(function evaluation) and the forward tangent trace (function
differentiation) can then be compiled, as shown in Table I.
Similarly, we compile the forward primal trace and forward
tangent trace for the ∂NRG algorithm; see Table II. For
∂NRG, we have one additional step in the primal trace for
the main algorithm [corresponding to Eq. (16)] but a trivial
tangent trace.

We can now compare the efficiency of the two approaches.
For forward-mode AD (fAD) we have ops(fAD) = 7N , and to
compute forward primal and tangent traces, 2 × ops(fAD) op-
erations are required. For ∂NRG, by contrast, ops(∂NRG) =
8N , but no other step is required to compute the derivative of
ĤN . However, this does not mean that ∂NRG is twice as fast as
fAD because the bottleneck eigensolver routines [58] appear
only in the forward primal trace. Nonetheless, ∂NRG still

TABLE II. Wengert list for ∂NRG. Left column: the forward primal trace for ∂NRG outputs the NRG Hamiltonian ĤN and its derivative
dĤN . Since derivatives are computed via Eqs. (21a) and (21b) in the main algorithm, there is no corresponding forward tangent trace in the
right column.

Forward primal trace Forward tangent trace

v−4 = dHimp dv−4 = dHimp

v−3 = � dv−3 = 0

v−2 = {tn} dv−2 = 0

v−1 = η dv−1 = 0

v0 = Himp dv−4 = 0

v1 = EIGENVALUES(v0 )

v2 = EIGENVECTORS(v0)

v3 = vT
−1

[v4]ii′ = ∑
ss′

∑
j j′ [v2]†

i;s j[v2]i;s′ j′ [v−4] j j′δss′

FOR n = 0 to N

v8n+5 = v8n

[v8n+6]iiss = v
1/2
−3 [v8n+1]l

[v8n+7]ii′ss′ = (−1)i′ [v−2]n
∑

σ [v8n+3]σ ii′ [v−1]σ ss′

[v8n+8]ii′ss′ = [v8n+6]ii′ss′ + [v8n+7]ii′ss′ + [v8n+7]†
ii′ss′

v8n+9 = EIGENVALUES(v8n+8)

v8n+10 = EIGENVECTORS(v8n+8)

[v8n+11]σ ii′ = ∑
ss′

∑
j j′ [v8n+10]†

i;s j[v8n+10]i;s′ j′ [v−1]σ ss′

[v8n+12]ii′ = ∑
ss′

∑
j j′ [v8n+10]†

i;s j[v8n+10]i;s′ j′ [v8n+4] j j′δss′

y0 = v8N+8 dy0 = v8N+12
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(a)

(b)

FIG. 7. FD derivative errors �(h) vs FD value h for the calcula-
tion of ∂U 〈n̂〉HN ,β̄ at N = 40. Shown for AIM parameters ε = −U/2,
V = 0.1, and B = 0 with (a) U = 0.01 and (b) U = 100. In all cases,
MK = 500.

provides a considerable performance advantage, as estab-
lished by explicit benchmarks in Appendix A.

APPENDIX D: DETAILS OF NRG CALCULATIONS

We used standard thermodynamic NRG [1] to calculate the
free energy, impurity occupation, and eigenvalues of ĤN . An
NRG discretization parameter � = 3 was used, and MK =
200 states were retained at each step for Figs. 1 and 3, while
MK = 600 states were retained for Fig. 2. No quantum num-
bers were used in this demonstration calculation.

APPENDIX E: DETAILS OF FINITE-DIFFERENCE
CALCULATIONS

We calculate the finite-difference (FD) derivative of a
function f via

Dh[ f ](x) = f (x + h) − f (x)

h
, (E1)

where h is the FD value. The FD derivative is connected
to the definition of the derivative by taking the limit, ∂ f

∂x =
limh→0 Dh[ f ](x).

In practice, we compute FD derivatives for a set of fi-
nite {hi} and check for convergence. However, care must
be taken due to the trade-off between round-off and trun-
cation errors [37]. The truncation error arises due to the
finite h > 0, which is required for the numerical evaluation
of Dh[ f ](x), and which would diminish in the formal limit
h → 0. However, for very small h, the difference in the func-
tion evaluations for f (x) and f (x + h) cannot be distinguished
numerically due to inevitable round-off errors in any finite
precision arithmetic. This leads to increasing errors as h → 0.

We quantify the FD error as

�(h) =
∣∣∣∣Dh[ f ](x) − ∂ f

∂x

∣∣∣∣. (E2)

This quantity is plotted in Fig. 7 for the derivative of the
AIM impurity occupation with respect to the impurity inter-
action, ∂U 〈n̂〉HN ,β̄ . We have used the ∂NRG derivative as the

true value of ∂ f
∂x in Eq. (E2). Figure 7 shows rather typical

behavior, with truncation errors dominating at large h and
round-off errors dominating at small h, with a stability plateau
in between where the derivative should be evaluated. How-
ever, comparison of Figs. 7(a) and 7(b) (which correspond
to model parameters U = 10−2 and U = 102, respectively)
demonstrates an important limitation of FD differentiation:
The optimal h is not fixed, but depends on input model
parameters. Reliable results therefore require such a conver-
gence analysis for each new set of model parameters and for
each new derivative. This becomes computationally costly.
The situation becomes significantly worse when considering
higher-order derivatives.

[1] K. G. Wilson, The renormalization group: Critical phenomena
and the Kondo problem, Rev. Mod. Phys. 47, 773 (1975).

[2] R. Bulla, T. A. Costi, and T. Pruschke, Numerical renormaliza-
tion group method for quantum impurity systems, Rev. Mod.
Phys. 80, 395 (2008).

[3] A. C. Hewson, The Kondo Problem to Heavy Fermions, Cam-
bridge Studies in Magnetism (Cambridge University Press,
Cambridge, UK, 1997), Vol. 2.

[4] A. K. Mitchell, M. Becker, and R. Bulla, Real-space renormal-
ization group flow in quantum impurity systems: Local moment
formation and the Kondo screening cloud, Phys. Rev. B 84,
115120 (2011).

[5] T. A. Costi, L. Bergqvist, A. Weichselbaum, J. von Delft, T.
Micklitz, A. Rosch, P. Mavropoulos, P. H. Dederichs, F. Mallet,

L. Saminadayar, and C. Bauerle, Kondo Decoherence: Finding
the Right Spin Model for Iron Impurities in Gold and Silver,
Phys. Rev. Lett. 102, 056802 (2009).

[6] D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-
Magder, U. Meirav, and M. A. Kastner, Kondo effect in a
single-electron transistor, Nature (London) 391, 156 (1998).

[7] A. J. Keller, S. Amasha, I. Weymann, C. P. Moca, I. G. Rau,
J. A. Katine, H. Shtrikman, G. Zaránd, and D. Goldhaber-
Gordon, Emergent SU(4) Kondo physics in a spin–charge-
entangled double quantum dot, Nat. Phys. 10, 145 (2014).

[8] Z. Iftikhar, S. Jezouin, A. Anthore, U. Gennser, F. D.
Parmentier, A. Cavanna, and F. Pierre, Two-channel Kondo
effect and renormalization flow with macroscopic quantum
charge states, Nature (London) 526, 233 (2015); A. K. Mitchell,

013227-12



AUTOMATIC DIFFERENTIABLE NUMERICAL … PHYSICAL REVIEW RESEARCH 4, 013227 (2022)

L. A. Landau, L. Fritz, and E. Sela, Universality and Scaling
in a Charge Two-Channel Kondo Device, Phys. Rev. Lett. 116,
157202 (2016); Z. Iftikhar, A. Anthore, A. K. Mitchell, F. D.
Parmentier, U. Gennser, A. Ouerghi, A. Cavanna, C. Mora, P.
Simon, and F. Pierre, Tunable quantum criticality and super-
ballistic transport in a “charge” Kondo circuit, Science 360,
1315 (2018).

[9] W. Pouse, L. Peeters, C. L. Hsueh, U. Gennser, A. Cavanna,
M. A. Kastner, A. K. Mitchell, and D. Goldhaber-Gordon, Ex-
otic quantum critical point in a two-site charge Kondo circuit,
arXiv:2108.12691.

[10] W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H.
Park, Kondo resonance in a single-molecule transistor, Nature
(London) 417, 725 (2002).

[11] A. K. Mitchell, K. G. L. Pedersen, P. Hedegård, and J.
Paaske, Kondo blockade due to quantum interference in single-
molecule junctions, Nat. Commun. 8, 15210 (2017).

[12] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.
Parcollet, and C. A. Marianetti, Electronic structure calculations
with dynamical mean-field theory, Rev. Mod. Phys. 78, 865
(2006).

[13] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996).

[14] K. M. Stadler, Z. P. Yin, J. von Delft, G. Kotliar, and A.
Weichselbaum, Dynamical Mean-Field Theory Plus Numerical
Renormalization-Group Study of Spin-Orbital Separation in a
Three-Band Hund Metal, Phys. Rev. Lett. 115, 136401 (2015).

[15] A. Weichselbaum, F. Verstraete, U. Schollwöck, J. I. Cirac,
and J. von Delft, Variational matrix-product-state approach to
quantum impurity models, Phys. Rev. B 80, 165117 (2009).

[16] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M.
Troyer, and P. Werner, Continuous-time Monte Carlo methods
for quantum impurity models, Rev. Mod. Phys. 83, 349 (2011).

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning
(MIT Press, Cambridge, MA, 2016).

[18] M. Bartholomew-Biggs, S. Brown, B. Christianson, and L.
Dixon, Automatic differentiation of algorithms, J. Comput.
Appl. Math. 124, 171 (2000).

[19] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D.
Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-
Milne, and Q. Zhang, JAX: Composable transformations of
Python+NumPy programs, 2018, https://github.com/google/
jax.

[20] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I.
Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg et al., TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015,
https://tensorflow.org.

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A.
Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai et al., PyTorch:
An imperative style, high-performance deep learning library, in
Advances in Neural Information Processing Systems 32, edited
by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett (Curran Associates, Red Hook, NY,
2019), pp. 8024–8035.

[22] T. Tamayo-Mendoza, C. Kreisbeck, R. Lindh, and A. Aspuru-
Guzik, Automatic differentiation in quantum chemistry with
applications to fully variational Hartree–Fock, ACS Cent. Sci.
4, 559 (2018).

[23] S.-X. Zhang, Z.-Q. Wan, and H. Yao, Automatic differentiable
Monte Carlo: Theory and application, arXiv:1911.09117.

[24] H. Xie, J.-G. Liu, and L. Wang, Automatic differentiation of
dominant eigensolver and its applications in quantum physics,
Phys. Rev. B 101, 245139 (2020).

[25] N. McGreivy, S. R. Hudson, and C. Zhu, Optimized finite-build
stellarator coils using automatic differentiation, Nucl. Fusion
61, 026020 (2021).

[26] B. Ponsioen, F. F. Assaad, and P. Corboz, Automatic differenti-
ation applied to excitations with projected entangled pair states,
SciPost Phys. 12, 006 (2022).

[27] S. Dick and M. Fernandez-Serra, Using differentiable program-
ming to obtain an energy and density-optimized exchange-
correlation functional, arXiv:2106.04481.

[28] L. Coopmans, D. Luo, G. Kells, B. K. Clark, and J. Carrasquilla,
Protocol Discovery for the Quantum Control of Majoranas by
Differentiable Programming and Natural Evolution Strategies,
PRX Quantum 2, 020332 (2021).

[29] R. A. Vargas-Hernández, R. T. Q. Chen, K. A. Jung, and P.
Brumer, Fully differentiable optimization protocols for non-
equilibrium steady states, New J. Phys. 23 123006 (2021).

[30] Z.-Q. Wan, S.-X. Zhang, and H. Yao, Mitigating sign problem
by automatic differentiation, arXiv:2010.01141.

[31] H.-J. Liao, J.-G. Liu, L. Wang, and T. Xiang, Differentiable
Programming Tensor Networks, Phys. Rev. X 9, 031041 (2019).

[32] W.-L. Tu, H.-K. Wu, N. Schuch, N. Kawashima, and J.-Y. Chen,
Generating function for tensor network diagrammatic summa-
tion, Phys. Rev. B 103, 205155 (2021).

[33] S. Linnainmaa, Taylor expansion of the accumulated rounding
error, BIT Numer. Math. 16, 146 (1976).

[34] G. Tinhofer, R. Albrecht, E. Mayr, H. Noltemeier, and M. M.
Syslo, Computational Graph Theory, Computing Supplemen-
tum, Vol. 7 (Springer, New York, 2012).

[35] A. Griewank and A. Walther, Evaluating Derivatives: Prin-
ciples and Techniques of Algorithmic Differentiation (SIAM,
Philadelphia, PA, 2008).

[36] C. Grossmann, H.-G. Roos, and M. Stynes, Numerical Treat-
ment of Partial Differential Equations, Universitext (Springer,
Berlin, 2007), Vol. 154.

[37] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M.
Siskind, Automatic differentiation in machine learning: a sur-
vey, J. Mach. Learn. Res. 18(153), 1 (2018).

[38] A. Weichselbaum and J. von Delft, Sum-Rule Conserving Spec-
tral Functions from the Numerical Renormalization Group,
Phys. Rev. Lett. 99, 076402 (2007).

[39] M. Seeger, A. Hetzel, Z. Dai, E. Meissner, and N. D. Lawrence,
Auto-differentiating linear algebra, arXiv:1710.08717.

[40] M. B. Giles, Collected matrix derivative results for forward and
reverse mode automatic differentiation, in Advances in Auto-
matic Differentiation, Lecture Notes in Computational Science
and Engineering, edited by C. H. Bischof, H. M. Bücker, P.
Hovland, U. Naumann, and J. Utke (Springer, Berlin, 2008),
Vol. 64.

[41] R. P. Feynman, Forces in Molecules, Phys. Rev. 56, 340 (1939).
[42] R. L. Dailey, Eigenvector derivatives with repeated eigenvalues,

AIAA J. 27, 486 (1989).

013227-13



JONAS B. RIGO AND ANDREW K. MITCHELL PHYSICAL REVIEW RESEARCH 4, 013227 (2022)

[43] A. Weichselbaum, Non-abelian symmetries in tensor networks:
A quantum symmetry space approach, Ann. Phys. (Amsterdam)
327, 2972 (2012).

[44] C. Han, A. K. Mitchell, Z. Iftikhar, Y. Kleeorin, A. Anthore, F.
Pierre, Y. Meir, and E. Sela, Extracting entropy of exotic quasi-
particles from conductance measurements, arXiv:2108.12878.

[45] E. Sheridan, C. Rhodes, F. Jamet, I. Rungger, and C. Weber,
Data-driven dynamical mean-field theory: An error-correction
approach to solve the quantum many-body problem using ma-
chine learning, Phys. Rev. B 104, 205120 (2021).

[46] J. B. Rigo and A. K. Mitchell, Machine learning effective mod-
els for quantum systems, Phys. Rev. B 101, 241105(R) (2020).

[47] F. B. Kugler, S.-S. B. Lee, and J. von Delft, Multipoint
Correlation Functions: Spectral Representation and Numerical
Evaluation, Phys. Rev. X 11, 041006 (2021).

[48] S.-S. B. Lee, F. B. Kugler, and J. von Delft, Computing Local
Multipoint Correlators Using the Numerical Renormalization
Group, Phys. Rev. X 11, 041007 (2021).

[49] G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin, A. E.
Antipov, M. I. Katsnelson, A. I. Lichtenstein, A. N. Rubtsov,
and K. Held, Diagrammatic routes to nonlocal correlations be-
yond dynamical mean field theory, Rev. Mod. Phys. 90, 025003
(2018).

[50] E. G. C. P. van Loon, F. Krien, and A. A. Katanin, Bethe-
Salpeter Equation at the Critical End Point of the Mott
Transition, Phys. Rev. Lett. 125, 136402 (2020).

[51] Ž. Osolin and R. Zitko, Padé approximant approach for obtain-
ing finite-temperature spectral functions of quantum impurity
models using the numerical renormalization group technique,
Phys. Rev. B 87, 245135 (2013).

[52] S.-S. B. Lee and A. Weichselbaum, Adaptive broadening to
improve spectral resolution in the numerical renormalization
group, Phys. Rev. B 94, 235127 (2016).

[53] A. K. Mitchell, M. R. Galpin, S. Wilson-Fletcher, D. E. Logan,
and R. Bulla, Generalized Wilson chain for solving multichan-
nel quantum impurity problems, Phys. Rev. B 89, 121105(R)
(2014).

[54] K. M. Stadler, A. K. Mitchell, J. von Delft, and A.
Weichselbaum, Interleaved numerical renormalization group as
an efficient multiband impurity solver, Phys. Rev. B 93, 235101
(2016).

[55] J. Rigo, AD-numerical-renormalization-group, 2021, https:
//github.com/JonasRigo/AD-Numerical-Renormalization-
Group.

[56] J. Rigo, Build BLAS on a TR2 NUMA platform, 2019,
https://github.com/JonasRigo/Summer-Wine/wiki/Build-
BLAS-on-a-TR2-NUMA-platform.

[57] R. E. Wengert, A simple automatic derivative evaluation pro-
gram, Commun. ACM 7, 463 (1964).

[58] J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel,
Performance and accuracy of LAPACK’s symmetric tridiagonal
eigensolvers, SIAM J. Sci. Comput. 30, 1508 (2008).

013227-14


